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Velocity correlations of two-dimensional hard needles from molecular dynamics
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We present velocity correlations of a two-dimensional system of perfectly smooth hard needles from mo-
lecular dynamics. In a nematic phase the autocorrelation velocity fun@iGf) clearly separates into two
domains with, first, a very quick decay and, then, a long-lasting exponential-like decay that pertains to several
characteristic times of the fast decay. The latter one is strongly subjected to the order of the system. We
demonstrate that the existence of two time scales corresponds to different relaxations of the transverse and
longitudinal components of the ACF.
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Serving as a natural reference system hard core spherése decay of ACF takes place on two time scales and that the
have proved in the 1970s to be very helpful in studyingmain contribution to ACF comes from the ability to transfer
liguids [1]. This approach has been extended with great suche momentum along the particle principal axis. In spite of
cess to utilize anisotropic bodies as hard ellipsdiglsor  the fact that the influence of the system order on the diffu-
spherocylinder$3] in the analysis of the basic properties of sional properties has been realized long 4@ to our
liquid crystals. Whereas spheres seem to be especially suiknowledge, this paper is the first presentation that clearly
able for all computer simulations, hard anisotropic particlesdemonstrates the influence of the long-range orientational
are not very convenient for molecular dynamics applicationsprder on the ACFs features themselves.
hence the Monte Carl0MC) method dominates. Neverthe- We consider hard needles confined to a plane. Their ki-
less, molecular dynamid®D) is indispensable to calculate netic energy is prescribed and the global momentum is put to
the dynamical properties. In the study of liquid crystalline zero. When at distance, they do not interact. Any needle can
phases the efforts are mostly concentrated on obtaining difnove freely, translationally as well as rotationally, until it
fusional properties. At the same time the diffusional feature®encounters another particle. Then a collision takes place. We
are a derivative of the behavior of the velocity autocorrela-assume that this happens always when the end of one needle
tion function (ACF). This fact has been well appreciated in touches another needle at any point. On contrary 3D colli-
isotropic fluids, where the ACF decay has been extensivelgions are always side to sifié]. Moreover, in the 3D case
investigated[4]. According to the Enskog theory the ACF the excluded volume is zero, whereas in 2D it becomes pro-
decays at short times exponentialtile deviations from this portional to 4.%sin(d) (whered is the contact angle between
theory observed in simulation are due to the vortex flow andwo needles andl is the half-length of the needleThe fact
caging and at longer times Aldegt al. [5] have shown that that the excluded volume is not zero results immediately in
the velocity correlations have long tails according T (n the possibility to obtain an ordered phase. The character of
is the dimensionality of the systgnt-or the constituents that the phase transition differs from 3D liquid crystals. For 2D
are anisotropic the description has been extended to includeard needles all available evidencE)] points towards the
the rotational variables and applied, at the beginning, to hardccurrence of a continuous disclination-unbinding transition
needles. For this system Frenletlal. presented ifi6] a very  of the Kosterlitz-Thoulesstype. Moreover, according to the
detailed study of the ACFs properties together with the disfindings of Frenkekt al.[10], the ordered phase of 2D hard
cussion of the diffusional properties. The three-dimensionaheedles does not exhibit true long-range order but quasi-
(3D) needles, however, form only an isotropic phase. Theoryong-range order, in which the order parameter vanishes in
and simulations for another system, hard ellipsdids8], = the thermodynamic limit and all the order parameter correla-
have revealed that the deviations of the MD translationations decay algebraically. The global order parameter de-
diffusion from the Enskog predictions are qualitatively simi- pends on the size of the systdon the total number of the
lar for both hard spheres and hard ellipsoids, whereas thparticles,N) asS~N~K"27% [10], whereK is the 2D Frank
rotational diffusion constant seems to be in agreement witltonstant. It is important to realize here a second notion of the
the Enskog theory as long as the phase is isotrf@jidn all ~ order parameter which represents the local strength of the
the above cases the short-time behavior of ACFs is well reanisotropic mean field. This local order is the factual param-
produced by the Enskog theory. Long tails are more probeter that influences the collision frequency and the velocity
lematic. correlations and should not be dependent on the system size.

Although the ACF is certainly being calculated in most of Although a few hundreds of particles seems to be a reason-
the MD runs for nematics made from hard bodies and fromable choice for calculating the local order parameter, more
particles interacting via continuous potentials such as thénvestigations are needed to establish the right size of the
Gay-Berne potential we have, surprisingly, found no dataarea over which this parameter has to be evaluated.
that had been reported on the ACF itself. In this paper we The system comprising 800 hard particles with the peri-
present now the velocity autocorrelation functions for theodic boundary conditions applied has been equilibrated by
simplest nematic that is formed by 2D needles. We show thaiheans of the MD technique. The simulation box is taken of
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unit length and the half-length of the particlesanges from 1
0.035-0.05 with the reduced densijty =4pL? correspond- -
ing to values from the interval 4.0—8.0. As a starting velocity 0.8 -

configuration we have used a random distribution of the lin- -
ear and angular velocities adjusted to the chosen temperature _, 06

kT=2. The equilibration runs have usually the length of voor
Npax=10° (125 col/particlé collisions for the isotropic phase 04 -
and 1.6<10° (200 col/particl¢ for the densities from the -
nematic regimep* =7.0,8.0. During these runs the system 02 -
has evolved towards the state that corresponds to the equi- -
partition theorem. The obtained characteristics of the linear 0

and the angular velocities have been fitted to the Maxwellian -
distributions. In these fittings the temperatures obtained for
each degree of freedom agree with the equipartition theorem
with an error of about 2%. The order parameter remains at a . . o
constant level but exhibits the fluctuations usual for hard FIG- 1. Velocity autocorrelatio,(t): a dashed line is for the
needles. Next we performed the production runs sf12* dSﬂSItyp* =4.5_(d|sordered stajeand a solid line is for the density
collisions, from which we collect the data for the autocorre-P" ~ 8:0 (nematic state
lations. This number of collisions is sufficient to allow the
ACF to drop almost to zero in the isotropic regime, but not inthe surface at the point of contact can be exchanged. Veloci-
the nematic. In our simulations we have not come acrossies in the tangential plane remain unchanged so that one
large numbers of chattering collisions except for few subsebody slides freely on the surface of the other. As a result the
quent collisiong 11]. influence on the change of depends on the mutual orien-
Autocorrelation functions are the statistical quantities thatation of the colliding needles and is, simply, proportional to
determine how long and in what form a trace of the initial sin(). It is a trivial conclusion then that if the needles are
value of the quantityA is being remembered over the passingclose to each other and the contact angle is small also the
time. They can be calculated as change of the longitudinal velocity is small. This observation
entails the next conclusion that for dense systems the corre-
lation functionsC; andC, will depend strongly on the sys-
Cal)= (A(0)2) N ,21 [A(0)AD)]. @) tem organizationH. Indeevd, looking at Fig. 1 one notices a
significant change in the behavior Gf, in the isotropic and
In this work we focus on the ACFs, whefeis assumed to be in the nematic phases. Whereas in the isotropic phase the
the linear or angular velocity. Also, because the particles aréunction bears resemblance to a smooth exponentlike func-
anisotropic in shape we will use a natural decomposition ofion, in the nematic phase one notices a clear separation into
the translational velocity into the component that is parallel two regimes. At first,C, quickly descends to the value
and perpendicular to the orientatianof the molecule at a around 0.4 and then decays slowly over a time interval 20
starting time[6]. To these velocities two autocorrelation times larger(in the nematic phagehan the time of the fast

functions are associated: the longitudinal and the transvergéecay. The connection of the two regimes reminds of a kink.
ACF, Close examination reveals that this feature is present in both

the nematic and the isotropic phases, i.e., the two-step char-

N

1 1 N acter of the decay also pertains to the isotropic phase. A very
Ci(t)= oD N 21 [vi(0)-a(0)vi(t)-a(0)], (2)  similar effect of such a kink can be obtained just by adding
(v(0)%) = two exponential decays with substantially different decay
1 LN times. By fitting an exponent to the slow decay part<of
_ - O D from Fig. 1 we can estimate the relaxation times for these
(D) (v(0)2 N Z‘l [vi(0)- Pi-vi(D)]. ® curves ast,en~ 0.1 in the nematic and;;~0.025 in the

isotropic phase. The presence of the orientational order has

In Eq. (3) P; is the projection tensorP;=1—g/(0)a(0). increased the relaxation time by a factor 4.
From Egs.(2) and(3) it can be easily seen th& andC, Figure 2 shows an example of a general behavior of three
are normalized in such a way that their sum gi&s For  ACFs,C;,C, , andC, for the densityp* =8.0 at which the
perfectly smooth Maxwellian velocity distributions bo@y  system forms a nematic phase. There is a large difference
andC, att=0 should be equal to 0.5. betweenCj andC, . After the initial stageC, quickly drops

During a collision an impulsive force can only influence to zero around the value 0.008 and stays at the null level
the longitudinal velocityv; of the particle whose end is ac- experiencing strong fluctuations. At the same time the fluc-
tive in the collision. For the other particle the gdr losg  tuations are almost not present@). This is due to the fact
of momentum is always perpendicular to its own orientationthat a change in the momentum of a colliding particle is
This feature is an effect of the needle geometry and of thgrevailed by the component transverse to the needle. Since
assumption that the particles collide elastically. In an elasti¢he longitudinal velocity change comes from a small fraction
collision only a part of momentum that is perpendicular toof the whole momentum exchanged, also its fluctuations are
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FIG. 4. Longitudinal velocity ACFC)(t) as a function of time:
dotted linep* =8, solid linep* =7, long-dashed ling* =6, dash-
dotted linep* =5, short-dashed ling* =4.

FIG. 2. Velocity autocorrelations in the nematic phage (
=8.0)

small. Beyond the initial steep slofe, is always strongly  gensity parameters is presented in Figs. 4 and 5. According
fluctuating ancCy is always subjected only to tiny noise. The 4 these result€; responds to the orientational order much
deviations ofC; andC, att=0 from the value 0.5 are due t0 stronger tharC, and in somewhat opposite way. The values
the veloc_:lty fluctuations present.fo_r a given starting conflgL_J—of C| have a tendency to increase for more dense and more
ration. Figure 2 allows one to distinguish two characteristicyqered systems whereas the value€of quite differently
time scales foC, : the first is given by the time after which - giminish, although very gently. Since in the isotropic phase
C, relaxes to zero and the second is associated to the relafe colliding molecules are not much restricted by the other
ation time ofCy. The decay ofC; can be fitted well 10 & particlesC; decays to zero on the time scale that is of the
single exponent. This feature reminds of the behavic€of  g3me order as fo€, . In Fig. 6 we present the angular
of 3D system of infinitely thin disk§12]. More simulations  ye|ocity autocorrelatiorC,, . Very short ranges of this func-
have to be done to establish the true functional dependencgqyy, can be fitted to one exponent, however, for the reasons
Both profiles, Figs. 1 and 2, are presented from single progien below, the overall behavior is by no means exponen-
duction runs. tial. This is clearly seen for more dense systems. In the nem-
Figure 3 shows the dependence of the order paran®eter 5iic phaseC,, departs from an exponential behavior and
on the density in the regime where the nematic phase sets iByen, after initial strong decay, gradually develops a negative
This figure reproduces qualitatively the Monte Carlo datapart. This feature is reminiscent of the behaviorQf in a

from [10], although our results are slightly shifted down with p5,q sphere fluidi5] and has already been reported by Fren-
respect to the density. True comparison between our MD datgy| gt 4. [6] for C, andC,, of the 3D hard needles. Due to

and MC data fronj10] cannot, however, be performed since yq argumentation df6] such behavior is understandable if
the thermodynamic parameters used in these two studies af ¢-gjes as
g

not compatible. The behavior & and C, for different
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FIG. 3. Order parametes for the simulations performed, aver- FIG. 5. Transverse velocity ACE, (t) as a function of time:
aged over several different states obtained during the equilibratiodash-dotted ling* =7, solid linep* =6, dashed ling* =5, dotted
runs. line p* =4.
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time will cancel a part of the Enskog theory contribution in

. such a way that the final result is proportional tp*17. But

for the isotropic and less ordered phases the negative part is
not present. Since the scaling ld4) is supposed to hold in
general, the above arguments may not be the only explana-
tion or it is a part of a more general mechanism supporting
. Eq.(4). For a hard spheres gas, for instance, negative parts of
_ the correlation function can be theoretically predicted within
the ring approximatiori4], an approach that takes into ac-
count recollisions. Here, in a so-called ring the tagged par-
ticle collides with a gas particle, undergoes a certain number
. of uncorrelated binary collisions, and at the end recollides
with the original collision partner. For anisotropic particles
e R recollisions are much more endemic, even up to chattering
collisions with hundreds of events between only two bodies
within very short timg 11]. In general the dependence®,

on density is similar as fo€, . The data presented in Figs. 4

FIG. 6. Angular velocity ACFCq(t) as a function of time:  _6 are the results of averaging over ten equivalent configu-
dotted line p* =7, solid line p* =6, dashed linep* =5, circles  rations.
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p*=4. An interesting question is which factors determine the po-
tential capability of hard particles of general shape to change

1 their longitudinal velocity. It is obvious that not only is the
D~ —. (4) shape anisotropy involved, but also the asphericity. An even

more interesting question is how any plausible measure of
the asphericity of the cores of the continuous potentials can

Assuming validity of the Enskog theory for the short—rangebe involved in the dynamical properties of realistic systems.

decay, in whichC(7) ~exp(~Bp*7), with B being the case  We thank Daan Frenkel for reading the manuscript and for
specific constant, the contribution ©, is scaled asD,  providing valuable remarks. This work was supported by the

~[oCa(7m)d7~1lp*. If Eq. (4) is to hold thenCg, is ex- Deutsche ForschungsgemeinschafDFG), Sonderfors-
pected to develop a negative portion whose integral ovechungsbereich 298.
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